Functional correction of short-chain acyl-CoA dehydrogenase deficiency in transgenic mice: implications for gene therapy of human mitochondrial enzyme deficiencies.
نویسندگان
چکیده
We report the therapeutic effects of liver-specific expression of a short-chain acyl-CoA dehydrogenase (SCAD) transgene in the SCAD-deficient mouse model. Transgenic mice were produced with a rat albumin promoter/enhancer driving a mouse SCAD minigene (ALB-SCAD) on both the SCAD normal genetic background and a SCAD-deficient background. In three transgenic lines produced on the SCAD-deficient background, recombinant SCAD activity and antigen in liver mitochondria were found up to 7-fold of normal control values. All three lines showed a markedly reduced organic aciduria and fatty liver, which are sensitive indicators of the metabolic abnormality seen in this disease found in children. We found no detrimental effects of high liver SCAD expression in transgenic mice on either background. These studies provide important basic and practical therapeutic information for the potential gene therapy of nuclear-encoded mitochondrial enzyme deficiencies, as well as insights into the mechanisms of the disease.
منابع مشابه
Systemic correction of a fatty acid oxidation defect by intramuscular injection of a recombinant adeno-associated virus vector.
Mitochondrial beta-oxidation of fatty acids is required to meet physiologic energy requirements during illness and periods of fasting or physiologic stress, and is most active in liver and striated muscle. Acyl-CoA dehydrogenases of varying chain-length specificities represent the first step in the mitochondria for each round of beta-oxidation, each of which removes two-carbon units as acetyl-C...
متن کاملLong-term Correction of Very Long-chain Acyl-CoA Dehydrogenase Deficiency in Mice Using AAV9 Gene Therapy
Very long-chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD-deficient mice and patients clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD-deficient mice were treated systemically with 1 × 10(12) vector genomes of recombinant adeno-associated virus 9 (rAAV9)-VLCAD. Biochemical co...
متن کاملGene Therapy for Very Long Chain Acyl-coA Dehydrogenase Deficiency Using Adeno-Associated Virus Vectors: A Dissertation
Very long chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD deficient mice and patients’ clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD deficient mice were treated systemically with 1x10 vector genomes of rAAV9-VLCAD. Expression was detected in the liver, heart and muscle. Al...
متن کاملMitochondrial very long chain acyl-CoA dehydrogenase deficiency--a new disorder of fatty acid oxidation.
Very long chain acyl-CoA dehydrogenase is a newly characterised enzyme in mitochondrial fatty acid oxidation. A girl who presented on the second day of life with a sudden and severe illness due to deficiency of this enzyme is reported. There is evidence that some children (and perhaps all) originally diagnosed with a deficiency of long-chain acyl-CoA dehydrogenase, in fact, have a defect involv...
متن کاملSIRT3 and SIRT5 Regulate the Enzyme Activity and Cardiolipin Binding of Very Long-Chain Acyl-CoA Dehydrogenase
SIRT3 and SIRT5 have been shown to regulate mitochondrial fatty acid oxidation but the molecular mechanisms behind the regulation are lacking. Here, we demonstrate that SIRT3 and SIRT5 both target human very long-chain acyl-CoA dehydrogenase (VLCAD), a key fatty acid oxidation enzyme. SIRT3 deacetylates and SIRT5 desuccinylates K299 which serves to stabilize the essential FAD cofactor in the ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 6 9 شماره
صفحات -
تاریخ انتشار 1997